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Introduction
Extrachromosomal DNA (ecDNA) refers to circular DNA 

segments, sometimes known as extrachromosomal circular DNA 
(eccDNA), which are located outside of the linear chromosome. 
The size of ecDNA varies from kilobases (kb) to megabases (Mb) 
[1-3]. ecDNA was not new since it was firstly discovered in 1965 
as double minutes (DMs) from human neuroblastoma specimens 
[4]. It is commonly considered to originate from the deleted 
part of the linear chromosome via several known mechanisms, 
such as chromothripsis and genomic rearrangements caused by 
endogenous or exogenous stimulations, and it is reported to own 
the capability to re-integrate into linear chromosomes [5-8]. ecDNA 
consists of circularized DNA segments originating from either the 
same chromosome or the different chromosomes. ecDNA is not 
only found in human, but also in other eukaryotic species like yeast 
and Caenorhabditis elegans, suggesting a common phenomenon 
in eukaryotic cells [9,10]. Although ecDNA is relatively small-
sized comparing with linear chromosome, recent studies have 
demonstrated the critical role of ecDNA to many diseases, such as 
cancer [11,12].

ecDNA is Highly Associated with Cancer
Cancer, to large extent, is characterized as the formation of 

aberrant genetic structures [8], where ecDNA generation is more 
frequent than that in normal tissues. This was confirmed by a  
recent study that ecDNA is commonly formed in various cancer  

 
types, in which glioblastoma, the cancer type with most frequent 
ecDNA formation, even shows an ecDNA-positive fraction over 
50% [13]. Moreover, it showed that ecDNA content is significantly 
higher in patient-derived cultures than cancer cell lines. For 
instance, ecDNA is positively detected in nearly 90% of patient-
derived glioblastoma cells and nearly 100% of patient-derived 
medulloblastoma cells [14]. Cancer develops frequently with the 
gradual acquisition of heterogeneity, which defines as the distinct 
morphological or functional profiles in a bulk tumor, resulting 
from the non-uniform distribution of genetic, transcriptomic and 
epigenetic alterations in the spatial and temporal manner [15]. 
Tumor heterogeneity contributes to drug resistance and poor 
prognosis [15]. ecDNA is considered to play the key role in tumor 
heterogeneity in respective of the discordant inheritance pattern 
and rapid amplification. A recent study has shown that ecDNA is the 
major cause of the genomic heterogeneity in glioblastoma, which 
is independent of alterations in linear chromosomes during tumor 
progression [16]. Another study has confirmed that ecDNA content 
is positively correlated with tumor heterogeneity in several cancer 
types, especially in patient-derived cultures of medulloblastoma 
and glioblastoma [14]. The existence of ecDNA in cancer cells 
contributes to several important properties and is recognized 
gradually as the major role in cancer development and progression. 
However, the detailed mechanism by which ecDNA functions inside 
the cancer cells is not fully revealed and still under investigation.
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ecDNA Carries Oncogenes to Promote 
Carcinogenesis

As well as the principal aspect, several studies have reported 
that ecDNA carries oncogenes like MYC (ec-MYC), CDK6 (ec-CDK6), 
CCND1 (ec-CCND1) by using fluorescence in situ hybridization 
(FISH) or live-cell imaging achieved by clustered regularly 
interspaced short palindromic repeats (CRISPR) in cancer cells 
in metaphase [14, 17]. The results showed that ecDNA which is 
not overlapped with linear chromosome distributes discretely or 
aggregates to form ecDNA hubs in the nucleus [14, 18]. Moreover, 
excessive amplification of ecDNA results in aberrant copy number 
formation of oncogenes, which leads to ectopic expression of 
oncogenes and cancer development. Furthermore, ecDNA also 
carries mutant oncogenes like EGFRvIII that has a deletion of 
ligand-banding domain, leading to consistent activation and 
uncontrolled cell growth or survival comparing with wild type 
EGFR [19]. EGFRvIII is most abundantly found in glioblastoma, and 
amplification of ecDNA-EGFRvIII (ec-EGFRvIII) contributes to the 
dynamic drug resistance against tyrosine kinase inhibitors (TKI) 
targeting EGFR, such as lapatinib [20].

ecDNA Carries Enhancers to Promote Oncogene 
Expressions

Besides oncogenes, ecDNA can also carry regulatory elements 
such as enhancers, a type of DNA sequence containing short motifs 
and more accessible for sequence-specific transcription factors 
(TFs) binding to facilitate expression of target genes [21]. Enhancers 
are located at either upstream or downstream of target promoters. 
Enhancers are marked by multiple epigenetic signatures such 
as histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 
acetylation (H3K27ac) [22]. Recent study reported that ecDNA 
has lower order of chromosomal compaction, evaluated by assay 
for transposase-accessible chromatin using sequencing (ATAC-
seq) and visualization (ATAC-see) [3]. In addition, chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) of 
H3K4me1 and H3K27ac have revealed the presence of active 
enhancers on ecDNA [3].

Enhancers loading on ecDNA function as two regulatory 
patterns: intragenic (intra-ecDNA) or intergenic (inter-ecDNA 
or ecDNA to linear chromosome). Co-amplification of enhancer 
and oncogene both on ecDNA results in dramatic up-regulation 
of oncogene [23,24]. For example, EGFR and its enhancers are 
identified to co-localized in glioblastoma via ecDNA reconstruction 
based on whole-genome sequencing (WGS) and H3K27ac ChIP-seq 
[23]. This regulatory pattern allows distal interactions between 
enhancer and promoter which may jump over the insulator, an 
insulation element for blocking regulatory effect on enhancer to 
target promoter, and subsequently results in intensive expression 
of target oncogenes. Meanwhile, enhancer on ecDNA is capable to 
regulate oncogenes located in linear chromosome, which creates 
the intergenic interactions between ecDNA and linear chromosome. 

Currently, super-enhancers (SEs), a cluster of proximate typical 
enhancers with high H3K27ac signals are identified on ecDNA in 
glioblastoma [25,26], which leads to genome-wide interactions 
between SEs on ecDNA and linear chromosomes via Hi-C and 
chromatin interaction analysis by paired-end tag sequencing (ChIA-
PET) [27]. Multiple oncogenes are simultaneously activated by 
this kind of SEs, forming a hub together with transcription factors 
and co-activators. Additionally, SEs loading on ecDNA are mobile 
and serve as the free regulatory elements to promote oncogene 
expression in the global chromosomal scale [27, 28]. Furthermore, 
the contact frequency between SEs on ecDNA and target oncogenes 
on linear chromosome is positively related to its expression level 
[27]. These results demonstrate a novel pattern of oncogenes 
activation by global interactions between SEs on ecDNA with 
multiple oncogenes in linear chromosomes.

Conclusion
Cancer is a malignant disease with high heterogeneity and 

poor prognosis. However, there is still little information regarding 
the detailed mechanism on carcinogenesis. The role of ecDNA in 
cancer is overlooked during past few decades because of limited 
technologies. Nowadays, the significance of ecDNA has been paid 
more attentions. ecDNA has been considered as a cancer-related 
biomarker, and a screening of plasma ecDNA in cancer patients has 
made it as an effective tool in a minimum invasive manner [29,30]. 
Therefore, detecting ecDNA in cancer may be an effective way to 
achieve early diagnosis and accurate treatment.
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